3,185 research outputs found

    Shockley model description of surface states in topological insulators

    Full text link
    We show that the surface states in topological insulators can be understood based on a well-known Shockley model, a one-dimensional tight-binding model with two atoms per elementary cell, connected via alternating tunneling amplitudes. We generalize the one-dimensional model to the three-dimensional case corresponding to the sequence of layers connected via the amplitudes, which depend on the in-plane momentum p = (p_x,p_y). The Hamiltonian of the model is described a (2 x 2) Hamiltonian with the off-diagonal element t(k,p) depending also on the out-of-plane momentum k. We show that the complex function t(k,p) defines the properties of the surface states. The surface states exist for the in-plane momenta p, where the winding number of the function t(k,p) is non-zero as k is changed from 0 to 2pi. The sign of the winding number defines the sublattice on which the surface states are localized. The equation t(k,p)=0 defines a vortex line in the three-dimensional momentum space. The projection of the vortex line on the two-dimensional momentum p space encircles the domain where the surface states exist. We illustrate how our approach works for a well-known TI model on a diamond lattice. We find that different configurations of the vortex lines are responsible for the "weak" and "strong" topological insulator phases. The phase transition occurs when the vortex lines reconnect from spiral to circular form. We discuss the Shockley model description of Bi_2Se_3 and the applicability of the continuous approximation for the description of the topological edge states. We conclude that the tight-binding model gives a better description of the surface states.Comment: 18 pages, 17 figures; version 3: Sections I-IV revised, Section VII added, Refs. [33]-[35] added; Corresponds to the published versio

    Magnetic effects in a holographic Fermi-like liquid

    Full text link
    We explore the magnetic properties of the Fermi-like liquid represented by the D3-D7' system. The system exhibits interesting magnetic properties such as ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons term in the effective gravitational action. We investigate the spectrum of quasi-normal modes in the presence of a magnetic field and show that the magnetic field mitigates the instability towards a striped phase. In addition, we find a critical magnetic field above which the zero sound mode becomes massive.Comment: 18 pages, 15 figure

    Rotation Measure Synthesis of Galactic Polarized Emission with the DRAO 26-m Telescope

    Full text link
    Radio polarimetry at decimetre wavelengths is the principal source of information on the Galactic magnetic field. The diffuse polarized emission is strongly influenced by Faraday rotation in the magneto-ionic medium and rotation measure is the prime quantity of interest, implying that all Stokes parameters must be measured over wide frequency bands with many frequency channels. The DRAO 26-m Telescope has been equipped with a wideband feed, a polarization transducer to deliver both hands of circular polarization, and a receiver, all operating from 1277 to 1762 MHz. Half-power beamwidth is between 40 and 30 arcminutes. A digital FPGA spectrometer, based on commercially available components, produces all Stokes parameters in 2048 frequency channels over a 485-MHz bandwidth. Signals are digitized to 8 bits and a Fast Fourier Transform is applied to each data stream. Stokes parameters are then generated in each frequency channel. This instrument is in use at DRAO for a Northern sky polarization survey. Observations consist of scans up and down the Meridian at a drive rate of 0.9 degree per minute to give complete coverage of the sky between declinations -30 degree and 90 degree. This paper presents a complete description of the receiver and data acquisition system. Only a small fraction of the frequency band of operation is allocated for radio astronomy, and about 20 percent of the data are lost to interference. The first 8 percent of data from the survey are used for a proof-of-concept study, which has led to the first application of Rotation Measure Synthesis to the diffuse Galactic emission obtained with a single-antenna telescope. We find rotation measure values for the diffuse emission as high as approximately 100 rad per square metre, much higher than recorded in earlier work.Comment: Accepted for publication in The Astronomical Journa

    Photonic realization of the relativistic Kronig-Penney model and relativistic Tamm surface states

    Full text link
    Photonic analogues of the relativistic Kronig-Penney model and of relativistic surface Tamm states are proposed for light propagation in fibre Bragg gratings (FBGs) with phase defects. A periodic sequence of phase slips in the FBG realizes the relativistic Kronig-Penney model, the band structure of which being mapped into the spectral response of the FBG. For the semi-infinite FBG Tamm surface states can appear and can be visualized as narrow resonance peaks in the transmission spectrum of the grating

    The Neutrino Magnetic Moment Induced by Leptoquarks

    Get PDF
    Allowing leptoquarks to interact with both right-handed and left-handed neutrinos (i.e., ``non-chiral'' leptoquarks), we show that a non-zero neutrino magnetic moment can arise naturally. Although the mass of the non-chiral vector leptoquark that couples to the first generation fermions is constrained severely by universality of the π+\pi^+ leptonic decays and is found to be greater than 50 TeV, the masses of the second and third generation non-chiral vector leptoquarks may evade such constraint and may in general be in the range of 11001\sim 100 TeV. With reasonable input mass and coupling values, we find that the neutrino magnetic moment due to the second generation leptoquarks is of the order of 10121016μB10^{-12}\sim 10^{-16} \mu_{\rm B} while that caused by the third generation leptoquarks, being enhanced significantly by the large top quark mass, is in the range of 10101014μB10^{-10}\sim 10^{-14} \mu_{\rm B}.Comment: 11 pages, 3 eps figures, uses revte

    Physical Response Functions of Strongly Coupled Massive Quantum Liquids

    Full text link
    We study physical properties of strongly coupled massive quantum liquids from their spectral functions using the AdS/CFT correspondence. The generic model that we consider is dense, heavy fundamental matter coupled to SU(N_c) super Yang-Mills theory at finite temperature above the deconfinement phase transition but below the scale set by the baryon number density. In this setup, we study the current-current correlators of the baryon number density using new techniques that employ a scaling behavior in the dual geometry. Our results, the AC conductivity, the quasi-particle spectrum and the Drude-limit parameters like the relaxation time are simple temperature-independent expressions that depend only on the mass-squared to density ratio and display a crossover between a baryon- and meson-dominated regime. We concentrated on the (2+1)-dimensional defect case, but in principle our results can also be generalized straightforwardly to other cases.Comment: 21 pages, 10 figures, extra paragraph and figure are added in response to referee's comment

    Determination of the Strong Coupling \boldmath{\as} from hadronic Event Shapes and NNLO QCD predictions using JADE Data

    Get PDF
    Event Shape Data from e+ee^+e^- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 GeV and 44 GeV are used to determine the strong coupling αS\alpha_S. QCD predictions complete to next-to-next-to-leading order (NNLO), alternatively combined with resummed next-to-leading-log-approximation (NNLO+NLLA) calculations, are used. The combined value from six different event shape observables at the six JADE centre-of-mass energies using the NNLO calculations is αS(MZ)\alpha_S(M_Z)= 0.1210 +/- 0.0007(stat.) +/- 0.0021(expt.) +/- 0.0044(had.) +/- 0.0036(theo.) and with the NNLO+NLLA calculations the combined value is αS\alpha_S= 0.1172 +/- 0.0006(stat.) +/- 0.0020(expt.) +/- 0.0035(had.) +/- 0.0030(theo.) . The stability of the NNLO and NNLO+NLLA results with respect to missing higher order contributions, studied by variations of the renormalisation scale, is improved compared to previous results obtained with NLO+NLLA or with NLO predictions only. The observed energy dependence of αS\alpha_S agrees with the QCD prediction of asymptotic freedom and excludes absence of running with 99% confidence level.Comment: 9 pages, EPHJA style, 4 figures, corresponds to published version with JADE author lis

    Holographic zero sound at finite temperature in the Sakai-Sugimoto model

    Get PDF
    In this paper, we study the fate of the holographic zero sound mode at finite temperature and non-zero baryon density in the deconfined phase of the Sakai-Sugimoto model of holographic QCD. We establish the existence of such a mode for a wide range of temperatures and investigate the dispersion relation, quasi-normal modes, and spectral functions of the collective excitations in four different regimes, namely, the collisionless quantum, collisionless thermal, and two distinct hydrodynamic regimes. For sufficiently high temperatures, the zero sound completely disappears, and the low energy physics is dominated by an emergent diffusive mode. We compare our findings to Landau-Fermi liquid theory and to other holographic models.Comment: 1+24 pages, 19 figures, PDFTeX, v2: some comments and references added, v3: some clarifications relating to the different regimes added, matches version accepted for publication in JHEP, v4: corrected typo in eq. (3.18
    corecore